Comparative Animal Physiology Respiratory Pigments

fluid

Respiratory Pigments

- High molecular weights (10⁵ to nearly 10⁷ D)
- Conjugated proteins proteins complexed w/ other organic molecules or metal ions (Fe²⁺ or Cu²⁺)
 - Color produced by these complexes
 - \bullet Pigment is not oxidized by O_2 , it is oxygenated (reversible reaction)
- Necessary because of low solubility of O₂ in aqueous solution (about 0.3 ml O₂/100 ml)
 - Allow transport of *molecular* oxygen, pickup of O₂ at sites of high O₂ tension and deposition at sites of low O_2 tension
 - Allow blood to carry a much greater quantity of O₂
 - Allow quick removal of O₂ from respiratory surfaces, thus maintaining a concentration gradient down which O₂ can diffuse

Types of Respiratory Pigments

Hemocyanin - gastropods and cephalopods, crustaceans, arachnids, and horseshoe crabs • Cu-containing protein, MW 1-7 million D

- One hemocyanin molecule contains two Cu atoms and can combine with $1 O_2$ molecule
- Blue in deoxygenated state, colorless or white in oxygenated state
 Never present inside cells, but always in suspension in blood
- *Hemerythrin* sipunculids (peanut worms), polychaetes, priapulids, and branchiopods
- Fe-containing protein, MW about 100,000 D
 One hemerythrin molecule contains several Fe atoms and each O₂ molecule can combine with 2 or 3 Fe atoms
- Brownish in decoursenated state number in overenated s
- Brownish in deoxygenated state, purple in oxygenated state
 Contained within coelomocytes that circulate within the coelomic

Types of Respiratory Pigments

Chlorocruotin - two families of marine polychaetes (Serpulidae and Sabellidae)

- Fe-containing protein, MW about 3 million D
- Similar structure to hemoglobin, except that in the heme group one vinyl group is replaced by a formyl group
- As with hemoglobin, one O₂ molecule combines with each of the 4 heme groups
- Green in both deoxygenated and oxygenated states
- Occurs in suspension in blood

Types of Respiratory Pigments

Hemoglobin (Hb) - all vertebrates and many invertebrates (most annelids, nemerteans, phoronids, and echiurids)

- Fe-containing protein, MW 68,000 D in humans. Composed of two pairs of polypeptide chains (α and β-Hb). Size ranges from 17,000 D to 3,000,000 D (annelids).
- Similar in structure to cytochromes, and thus is also found in plants
- Contains four heme groups, each of which can combine with one O₂

molecule, when all four heme groups are complexed with $O_{2'}$ the molecule is said to be *fully saturated*

- Dark red in the deoxygenated state, bright red in the oxygenated state
- May occur within RBCs or in suspension in blood. Effectiveness greatly increased when packed into cells, as is true of most vertebrates

Fgure 23.1 The chemical structure of hemoglobin (Part 2) (b) Whale myoglobin: An example of a single heme-globin complex Heme-globin subunits Globin bunits Clobin bunits

Animal Physiology 2e, Figure 23.1 (Part 2)

Topic 13 - 1

Comparative Animal Physiology Respiratory Pigments

Spring 2010

Functions of Respiratory Pigments

- At a given pH, the amount of O₂ that a given quantity of respiratory pigment can pick up depends on P_{O2} (usually in mm Hg), and the loading of the pigment is given in percentage of saturation with O₂
- These relationships are called *oxygen dissociation curves*. The s-shape allows more O₂ to be delivered a a given P_{O2}
 - Slight changes in P_{O2} permit a relatively large amount of O₂ to be released (at P_{O2}'s typical of tissue cells)
 - O₂ to be released (at P_{o2} s typical of tissue cells)
 At higher P₀₂'s (typical of respiratory surfaces), pigment is completely saturated

Topic 13 - 2

Comparative Animal Physiology Respiratory Pigments

Spring 2010

Functions of Respiratory Pigments

- Half-saturation pressure is the P_{O2} at which a respiratory pigment is only half-saturated with O2
- Pigments with a lower half-saturation pressure have a higher *affinity*

 $\bullet\,$ This is because myoglobin has only one protein chain and one heme group, and can thus combine with only one O_2

Environmental Effects on Respiratory Pigment Function

- In hemoglobin, the interaction of one heme group with an O₂ molecule increases the affinity of the other heme groups
 - Since the 3-D structure of hemoglobin suggests that the heme groups are widely separated, it is though that the combination of O_2 with one heme group affects the entire Hb molecule shape
- \blacksquare O₂ dissociation curves also affected by temperature, blood pH, and blood $P_{\rm CO},$
 - Low pH or high $P_{\rm CO_2}$ generally shift the dissociation curve to the right (*Bohr effect*). These effects are slightly different, although a high $P_{\rm CO_2}$ does produce a lower blood pH
 - This important in O₂ transport, in that the P_{CO2} in the capillaries around active tissues is elevated and the blood slightly acid. Under these conditions, a shift to the right facilitates O₂ unloading
 - Explains why sudden shifts in temperature, or decreased pH from acid deposition, can kill aquatic animals

Effects of pH and temperature on O_2 dissociation curves of horseshoe crabs. Note the <u>reverse</u> Bohr effect for pH.

Figure 23.11 The Bohr effect typically enhances O₂ delivery in an animal

Topic 13 - 3

Comparative Animal Physiology Respiratory Pigments

Reverse Bohr Effect

Why would an organism have a reverse Bohr effect and high O_2 affinity?

- Actually, a given pigment may not exhibit the Bohr effect in a given animal, but all of the respiratory pigments have been shown to exhibit this behavior, especially at high *P*_{CO2}'s
- Typical of animals that live in stagnant, low O₂ environments
- Reverse Bohr shift increases the loading capacity of blood under these conditions
- In the case of horseshoe crabs, it is to provide enough O₂ for reproduction.
 - Long copulatory period in shallow bays
 - \bullet High temperatures low dissolved O_2, etc.

- O₂ affinity decreases at low salinity, probably due to conformational effects on pigment proteins
- O₂ affinity of hemoglobin is decreased by phosphate compounds in vertebrate blood cells: ATP, GTP, diphoshoglycerate (DPG), inocetyl pentaphosphate (IP5)
 - Fishes: high GTP
 - Reptiles: high ATP
 - Birds: high IP5
 - Mammals: high DPG
- These phosphate compounds increase O₂ loading, and can increase or decrease O₂ unloading

Comparative Animal Physiology Respiratory Pigments

Spring 2010

Figure 23.18 The O_2 affinity of the hemoglobin in the whole blood of primates is a regular function of body size mm Hg Ring-tailed lem 35 Black Rhesus monkey ැයි 30 Gibbon Human Chimpanzee • 25 Gorilla Orangutan • 10 100 1000 Body weight (kg) on log scale logy 2e, Figure 23.18

CO₂ Transport

- CO₂ produced by tissue cells is transported to the lungs or other respiratory surfaces for excretion
- Only small amounts of CO₂ are in solution in the blood because of reactions that occur within the plasma, or within erythrocytes of vertebrates
- CO₂ in aqueous solution forms *carbonic acid* (H₂CO₃), a reaction speeded by the enzyme *carbonic anhydrase*, which is found in the blood of many animals (in vertebrates it is mostly within the erythrocytes)
- Carbonic acid can dissociate into H⁺ and HCO₃⁻, and these *bicarbonate* ions can then enter the acid-base regulating mechanisms
- However, about 15-20% of the CO₂ reacts with hemoglobin

Hemoglobin and CO₂ Transport

- $HbNH_2 + CO_2 \Leftrightarrow HbNHCOOH \Leftrightarrow HbNHCOO^-$
- •Where NH₂ represents the amino groups of the amino acids of the hemoglobin (the complex is known as *carbaminohemoglobin*)
- ■At the respiratory surface, CO₂ diffuses from the blood into the air or water. Carbonic anhydrase catalyzes the reverse reaction and aids in forming CO₂, which can be eliminated
- Direction of the reaction depends on P_{CO2}: where CO₂ is low (as near the respiratory exchange surfaces) H₂CO₃ is split into H₂O and CO₂, and the CO₂ move down its concentration gradient to the exterior

Comparative Animal Physiology Respiratory Pigments

Spring 2010

Animal Physiology 2e, Figure 23.20

