A Protocol for an Undergraduate Ecology Laboratory on Water Quality Impacts **Utilizing Sealed Microcosms**

Eric L. Peters and Timothy J. Bell

Department of Biological Sciences Chicago State University

9501 S. King Dr.

Chicago, IL 60628-1598

E-Peters@csu.edu

webs.csu.edu/~biep1/

Lab Development Goals

- Increase student appreciation for important ecological concepts (in this case, trophic structure; biotic effects on abiotic conditions)
- Have a manipulative experimental laboratory that applies scientific techniques to ecology
- Demonstrate important anthropogenic impact(s) on ecosystems (in this case, water quality)
- Generate data appropriate for student analysis and interpretation, developing analytical and writing skills
- Minimize cost while maximizing lab safety, convenience, and simplicity
- Avoid using vertebrates (other than students)

Aquatic Microcosms

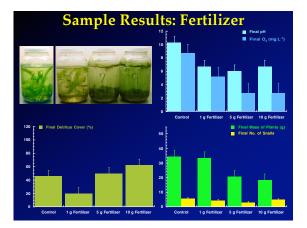
- Can be constructed and maintained indoors as a semester-long project
- Can be established with a variety of freshwater biota
- Can be manipulated by additions of common household chemicals, yet can still simulate relevant impacts on aquatic ecosystems and water quality
- A variety of measurements are possible using inexpensive test kits and instruments
- Produces consistent and obvious results that reinforce concepts presented in lecture
- Complexity of lab protocol can be tailored to fit the students' achievement level

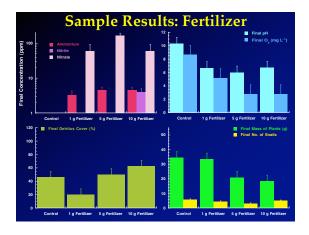
Microcosm Lab Biota

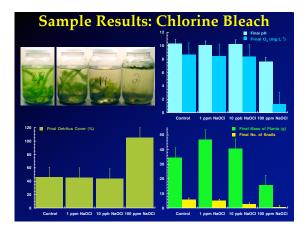
- Pond water (contains bacteria, phyto- and zooplankton Hornwort (*Ceratophyllium*) – a non-rooting plant that does well without sediments
- Daphnia magna a 1° consumer of phytoplankton: *must* be acclimated to pond water before lab starts
- Branchiopods (*Triops*) a 2° consumer of *Daphnia* (optional): will become more abundant during the experiment
- if hatched 10-14 days before lab starts Snails of several genera do well and reproduce
- **Planarians** detritivorous species also do well, but should be acclimated to pond water first

Microcosm Lab Protocol

- Students examine last year's microcosms. Each student then cleans out
- one of last year's microcosms (very important!) • Fill each 3.96-L PET bottle with 3 L of pond water
- Measure water quality parameters
- Weigh and add plants; count and add animals.
- Seal and maintain under light source for 5-6 weeks
- Measure water quality parameters, add bleach, fertilizer or sulfuric acid, repeat water quality measurements after treatments
- Seal and maintain under light source for another 5-6 weeks
- Measure water quality parameters; weigh plants and count animals




Measurements


- Measurements of nitrogen (ammonium, nitrite) and nitrate) and free and total chlorine are made using test kits ('dip stick'-type kits are fast, simple, easy to read, non-hazardous, and sufficient for the range of values encountered)
- Measurements of conductivity, dissolved O₂, and pH are done with inexpensive meters (the latter two can also be measured with test kits)
- Wet mass of plants and counts of invertebrates
- Qualitative estimates of water color (ranging from clear through yellow to green or brown) and amount of detritus are also made

Microcosm Manipulations

- Successful manipulative experiments have been conducted that demonstrate:
- *Eutrophication* (inorganic fertilizer runoff) through additions of NPK fertilizer: 0.1, 1.0, and 10.0 g
- *Chlorine* (paper manufacture, chlorination of water supplies) through additions of chlorine bleach: (10 ppb, 1 ppm, 100 ppm buffered sodium hypochlorite)
- Acid deposition (combustion of fossil fuels) through additions of H₂SO₄ to reduce pH by 0.5, 1, and 2 pH units from the value at 5 or 6 weeks

Analysis and Interpretation

- In the first class, we discuss the rationale for the experiments and the hypotheses to be tested • The students are given worksheets and the lab protocol
- We collect all data on a laptop during each of the three lab periods and distribute handouts showing graphical results at all steps
- We conduct the final statistical tests for differences in means or medians
 - We then share these with the students, and discuss the significance of the statistical outcomes
 - Where appropriate, we conduct post-hoc tests and guide the students through the process of determining which treatment means differ from the others
- The students then write up the experiment in the form of a short scientific paper

Possible Microcosm Variants

- Competition studies under pollution stress (or not) of different planarians, i.e., brown planarians (Dugesia tigrina), black planarians (Dugesia dorotocephala), and white planarians (Procotyla fluviatilis)
- Studies comparing water from two sites (reducing the number of variables manipulated to 1 or 2)
- Studies involving other common water pollutants, e.g., household pesticides and herbicides, motor oil, or gasoline
- Other organisms: amphipods (e.g., Hyalella azteca), aquatic oligochaetes (e.g., Tubifex)

A Protocol for an Undergraduate Ecology Laboratory on Water Quality Impacts Utilizing Sealed Microcosms

Eric L. Peters and Timothy J. Bell

Department of Biological Sciences

Chicago State University 9501 S. King Dr. Chicago, IL 60628-1598

E-Peters@csu.edu webs.csu.edu/~biep1/

